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Charles Babbage commenced work on the design of the Analytical Engine in
1834 following the collapse of the project to build the Difference Engine. His
ideas evolved rapidly, and by 1838 most of the important concepts used in
his later designs were established. This paper introduces the design of the
Analytical Engine as it stood in early 1838, concentrating on the overall
functional organization of the mill (or central processing portion) and the
methods generally used for the basic arithmetic operations of multiplication,
division, and signed addition. The paper describes the working of the
mechanisms that Babbage devised for storing, transferring, and adding
numbers and how they were organized together by the “microprogrammed”
control system; the paper also introduces the facilities provided for user-
level programming. The intention of the paper is to show that an automatic
computing machine could be built using mechanical devices, and that
Babbage’s designs provide both an effective set of basic mechanisms and a
workable organization of a complete machine.

Categories and Subject Descriptors: K.2 [History of Computing]-
C. Babbage, hardware, software
General Terms: Design
Additional Key Words and Phrases: Analytical Engine

1. Introduction

Charles Babbage commenced work on the design of
the Analytical Engine shortly after the collapse in 1833
of the lo-year project to build the Difference Engine.
He was at the time 42 years o1d.l

Progress on the Analytical Engine went rapidly. The
first notes appeared in mid-1834, and by mid-1836 a
workable design had evolved. A major revision of the
design took place in late 1837. For the next decade
work on the Analytical Engine consisted largely of
refinement and elaboration of the basic design of 1837-
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1838. During this period Babbage appears to have
made no attempt to construct the Analytical Engine,
but preferred the unfettered intellectual exploration of
the concepts he was evolving.

After 1849 Babbage ceased designing calculating
devices. He returned to the subject in about 1856, at
the age of 64, probably inspired by the completion of
the Scheutz Difference Engine, which had been devel-
oped from a description of his own earlier Difference
Engine. In this second phase of work on the Analytical
Engine, Babbage concentrated on methods by which
it might be built at a reasonable price and explored
both precision-stamping and pressure-diecasting tech-
niques. A substantial model was under construction at
the time of his death in 1871 at the age of almost 80.

Very little in the way of a general introduction to
the Analytical Engine was written in Babbage’s life-
time. At the end of 1837 Babbage wrote a general
description, but it was not published until recent times
(Randell 1973). In 1840 Babbage journeyed to Turin
and presented a series of seminars to a group of
distinguished Italian scientists with the intention that
one of them would publish an account of his ideas.
Such a description was published by L. F. Menabrea
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and subsequently translated from French into English
by Ada Lovelace in 1843 (Babbage 1889). The trans-
lation has extensive notes, written under Babbage’s
supervision, that give an excellent account of his un-
derstanding of the mechanization of computational
processes and the mathematical powers of the ma-
chine. Unfortunately, none of the contemporary ac-
counts give any useful technical detail on the mecha-
nism or design of the Analytical Engine, and it is
impossible from them to assess its merits as a com-
puting machine.

Babbage did, however, keep extensive private notes
on the design of the mechanism of the Analytical
Engine. The notes, now in the collections of the Sci-
ence Museum in London, comprise about 300 sheets
of engineering drawings, typically 2 by 3 feet; 600-700
“notations’‘-abstract representations of the mecha-
nism such as timing diagrams, logic diagrams, flow-
charts, state-transition diagrams, and walk-&roughs
of microprograms, all typically 2 by 3 feet or larger of
close handwriting; and 6000-7000 pages of notebooks.
The total amount of material is daunting, and it suffers
the disadvantage that it is largely very detailed and
technical in nature and does not provide much over-
view of the design. In particular, matters such as the
intended user’s instruction set are difficult to deter-
mine, although there are several dozen sample pro-
grams prepared between 1837 and 1840 (all, inciden-
tally, substantially predating the preparation of Ada
Lovelace’s notes, which incorporate several of them).

This paper gives an account of the design of the
Analytical Engine as it stood in 1838. It was this basic
design that Babbage refined and elaborated in the
period up to 1848. The description is based on a close
examination of the papers in the Science Museum, but
has been simplified in many respects, particularly with
regard to details of the mechanism. The intention of
this paper is to show that an automatic computing
machine could be built using mechanical devices and
that Babbage’s designs provide both an effective set
of basic mechanisms and a workable organization of a
complete machine. The paper is also intended to serve
as an introduction to more detailed analyses of Bab-
bage’s designs that are in preparation.

The paper starts with a discussion of mechanical
devices for the storage, transfer, and addition of num-
bers. The arrangement of these basic parts into a
block-diagram-level description of the organization of
the machine is presented. The algorithms for multi-
plication, division, and signed addition are then de-
scribed along with the mechanism by which the con-
trol of these was microprogrammed. Finally, the user
programming of the Analytical Engine is examined as
it was understood at this stage of the design.
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Three other persons have studied the Babbage pa-
pers in the Science Museum collection. Collier (1970)
has provided an excellent overview of Babbage’s work
on automatic calculating devices. His study, based
largely on the notebooks and on the correspondence
in the British Library and the Buxton papers in Ox-
ford, is primarily concerned with the intellectual his-
tory of Babbage’s ideas and in particular with the
transition from the special-purpose Difference Engine
to the general-purpose Analytical Engine. Wilkes
(1971) has studied the notebooks to achieve a more
detailed understanding of some aspects of the user-
programming facilities of the Analytical Engine than
is provided in the present paper. Hyman (1982) has
also provided an overview of Babbage’s calculating
machines in the context of a biographical study of
Babbage’s wide-ranging intellectual achievements.

The present paper is the first one based primarily
on a detailed study of Babbage’s notations and is
therefore the first to provide a detailed account of the
organization of the machine and in particular of the
sophistication of Babbage’s microprogramming ideas.
It discusses only one model out of the complete evo-
lutionary range of Babbage’s designs (though one I
believe to be in most respects typical), and many of
the conclusions must therefore be regarded as tenta-
tive pending the extension of this study to other de-
signs.

In almost all its facets Babbage’s work on the Ana-
lytical Engine was completely original-the only an-
tecedent was his own Difference Engine. Only in the
adoption of the barrel, from automata and music
boxes, and punched cards, from the Jacquard loom, is
there any significant borrowing from an existing tech-
nology, but Babbage’s substantial elaboration of the
capabilities of these, as well as his specific application
of them, is again quite original.

2. Overview

The Analytical Engine was a decimal machine that
used a sign-and-magnitude representation for numbers
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in the store. Babbage’s decisions to adopt decimal and
sign-and-magnitude number representation (both of
which are now uncommon) were arrived at after care-
ful deliberation.

Modern computers are largely binary because it is
much easier to design a two-state electronic circuit
than one with more states, such as 10 for a decimal-
number representation. No such consideration applies
to mechanical apparatus. A wheel rotating on a shaft
is a particularly easy element to construct and can as
readily have 10 or 100 positions as 2. Babbage consid-
ered number bases over this range with respect to
speed and quantity of apparatus required and found
no significant reason to depart from the decimal sys-
tem that made input/output and the examination of
internal states much easier. Whereas electronic com-
puters are built, conceptually at least, with very low-
level logic devices, so that addition is assembled from
NAND functions, the components of the Analytical
Engine are generally at a higher level and correspond
more directly with the function they perform. The
decision to adopt a decimal representation is therefore
a consequence of a characteristic difference between
electronic and mechanical devices, although there are
elements in the Analytical Engine whose functions are
essentially of a logic nature.

A sign-and-magnitude representation is used for
numbers for the same reasons of ease of input/output
and examination of internal states that caused Bab-
bage to adopt a decimal system, and also because it
simplifies multiplication and division operations. The
Difference Engine used a tens-complement represen-
tation for negative numbers, and the Analytical En-
gine uses a variety of complement and recoded repre-
sentations to simplify its internal operations.

In marked contrast to the Difference Engine, the
Analytical Engine makes a clear distinction between
the “store,” in which operands and results are held
between operations, and the “mill,” to which they are
brought to perform arithmetic operations. The store
and the mill correspond closely to the memory and
central processing unit (CPU) of a modern computer.

In both the store and the mill the digits of numbers
are represented by the positions of wheels (“figure
wheels”) rotating about vertical “axes.” A collection
of figure wheels on an “axis” corresponds to a register
in a modern computer. The Analytical Engine is built
from a series of horizontal plates separating the figure
wheels on the various axes. The space between two
plates is called a “cage.” The bottom cage holds the
units figure wheels on each axis, the next above the
tens, then hundreds, and so on. In general, digit trans-
fers take place simultaneously in all cages, so the
Analytical Engine is a digitwise parallel machine.

All numbers in the Analytical Engine are of 40
digits, and there are 40 cages and 40 figure wheels on
each axis. This large number was possibly chosen to
simplify scaling problems in the absence of a floating-
point number system. Since the plates dividing the
cages were about 3 inches apart, a figure axis would be
about 10 feet high. Allowing for the control mechanism
underneath, the Analytical Engine would have stood
about 15 feet high. The mill would have been about 6
feet in diameter, and the store would have run lo-20
feet to one side. The Analytical Engine would there-
fore have been about the size and weight of a small
railway locomotive.

The internal operations of the Analytical Engine,
such as multiplication and division, were controlled by
“barrels” to which were fixed studs something like in
a music box or barrel organ. The barrels acted to effect
control in a manner closely analogous to modern mi-
croprogram control; they were just like microprogram
stores. The person programming the Analytical En-
gine would use punched cards that initiated sequences
of microoperations. Babbage had a clear understand-
ing of such hierarchies of control.

It is tempting in describing the Analytical Engine to
use modern terms such as register and microprogram
in place of Babbage’s axes and barrels. There is some
risk in doing so because Babbage’s elements differed
in detail from their modern equivalents and had, in
consequence, different functional characteristics. For
example, two sets of figure wheels on an axis usually
shared a common reading and transfer mechanism. An
axis could therefore store more than one number,
unlike a modern register. All transfers involved a
destructive readout, again unlike a modern register, so
two sets of figure wheels were necessary if an axis was
required to give off and retain a number. I will use
Babbage’s terminology when describing details of his
mechanisms, but use the modern terms when empha-
sizing the functional analogy with modern machines.
This method will provide a painless introduction to
Babbage’s terminology, the use of which will be essen-
tial in more detailed analyses.

Throughout this-paper the mechanisms of the An-
alytical Engine are described by simplified figures that
avoid much of the detail of Babbage’s designs. The
figures have been developed for a pedagogic purpose
because most computing people cannot be expected to
be familiar with and fluent in reading detailed me-
chanical-engineering drawings. Thus, for example, pic-
torial isometric drawings of mechanisms are used in
place of Babbage’s plan and elevation drawings, and
the mechanisms have been simplified and rearranged
to show only those features essential to the discussion
in this paper. If the figures suggest gross design flaws
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Figure 1.  Figure wheel typical
of the store and the mill figure
axes. The wheel may stand in
one of 10 positions to store the
digit shown by the index mark.
The number may be read by
raising the axis until its finger is
level with that on the inside of
the figure wheel and rotating it
through nine digit positions.
The figure wheel will come to
stand at the 0 position, and a
movement proportional to the
digit originally stored will be
given to the remainder of the
mechanism by the gear teeth.
The process is termed “Giving
Off”

or evident physical impossibilities, the fault is mine,
not Babbage’s. An examination of his original draw-
ings is essential for a critical appraisal of his designs.
Where practicable the simplified figures have been
lettered to correspond to Babbage’s drawings.

3. Storage and Transfer of Numbers

A typical figure wheel and its axis are shown in Figure
1. The figure wheel can be rotated by means of the
gear teeth to stand in any one of 10 positions; the digit
then stored is shown by the figure opposite the index
mark carried on the framework. In practice the figure
wheel is brought correctly to position and secured
against the possibility of subsequently being jarred
out of place by locking arms that engage locking teeth
on the figure wheel. These arrangements are not
shown in the figure but are essential to the reliable
operation of the machine.

Figure 2. Basic process of addition. A digit is given off by the figure wheel on the
right and received by the figure wheel on the left. If the receiving figure wheel is
not originally at 0, it will finally come to stand at the sum of its original value and
the digit received. This process occurs simultaneously for all digits of numbers.

A finger b protrudes to the inside of the figure wheel
opposite the 0 digit position. To read out the number
stored on a figure wheel, the figure axis is raised until
a finger a on it is at the same level as the finger b of
the figure wheel. The axis is then rotated through nine
digit positions. At some point during this rotation the
fingers a and b will come into contact, and the figure
wheel will be rotated until it finally comes to stand at
the 0 position. In the process the figure wheel will
move through exactly as many digit positions as the
value of the digit initially stored on it; this movement
may be conveyed via the gear teeth of the figure wheel
to some other part of the Analytical Engine.

This form of storage exhibits a destructive readout;
following the read operation all figure wheels will
stand at 0 irrespective of the digit originally stored,
and the number originally stored is lost. If it is desired
not to lose the number then it must be stored, as it is
read, on another set of figure wheels. For this purpose
each figure:axis  of the mill of the Analytical Engine is
provided with two figure wheels in each cage. Fre-
quently, as a number is “given off” by one set of figure
wheels, it is stored on the other set on the same axis,
and thence later given off back to the original set. The
two sets of figure wheels on one axis may, however, be
used independently if so desired. In Babbage’s termi-
nology a number is “given off” by a set of figure wheels
as they are “reduced to zero.”

The basic process of addition is shown in Figure 2.
A digit is given off by the figure wheel on the right, on
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U
Figure 3. Practical realization of the method of digitwiseparallel addition. Two figure wheels are shown in each cage, so
two numbers may be stored on each figure axis. In practice the mechanism is arranged in a circle so that the axes A and ‘A
coincide. A number given off may therefore be received on the alternate set of figure wheels of the same axis.

axis A, and transferred by the intermediate gears G
and J to the figure wheel on axis ‘A. The directions of
motion are so judged that as the figure wheel on A is
reduced to 0 by moving in the subtractive sense, the
figure wheel on ‘A moves in the additive sense. If,
before the transfer, the figure wheel on ‘A stood at 0,
it will come to stand at the same digit as was originally
stored on A. If, however, the figure wheel on ‘A initially
stood at a nonzero  digit, it will finally come to stand at
the sum of that digit and the digit given off by A. The
same process occurs simultaneously in all cages, so we
have digitwise parallel addition.

Before we examine the possibility of a carry gener-
ated in the addition process, we will consider the
arrangement of the transfer gearing in more detail.
Figure 3 shows two cages from the Analytical Engine;
there are two sets of figure wheels on each of the figure
axes A and ‘A. A number can be given off by either set
of figure wheels on A by raising or lowering the axis so

that the internal fingers of the appropriate set of figure
wheels are engaged by the fingers on the axis. The
“transfer pinions” are loose on axis G but may be
raised or lowered with it to engage with either set of
figure wheels of A. The transfer pinions on G are,
however, always engaged with the “long pinions” on
axis S, so the long pinions will receive the motion from
whichever set of figure wheels on A give off a number.
This motion is transferred to the figure wheels on ‘A
by the long pinions on L and the transfer pinions on J
as shown. The net result is digit transfers identical to
those described in Figure 2 from either set of figure
wheels on A to either set on ‘A.

In practice, digits transferred may be received by
figure wheels on the same axis as those that give off
by arranging the axes A, G, S, L, J, ‘A not in a line as
shown but in a circle so that axis ‘A is the same axis as
A. Such a group of axes, labeled as in Figure 3, will be
found to occur frequently in the general arrangement
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of the Analytical Engine discussed later (Figure 10).
The long pinions S and L are also commonly used as
the takeoff point for transfers to and from other parts
of the machine.

With such long trains of gearing between the source
and destination of motion, substantial amounts of lost
motion and backlash can arise because of the neces-
sary looseness of the gearing. To prevent the lost
motion from disturbing the correct functioning of the
machine, locking arms act on the figure wheels and
some of the intermediate gearing to bring them cor-
rectly into place. These “Zockings”  are applied in
sequence from the source to the destination of each
transfer. The effect is similar to providing an ampli-
fying element in each gate of an electronic machine,
as is universally done, to make output logic levels
conform to the same electrical specifications as the

inputs. The lockings are essential to the correct action
of the Analytical Engine and are demonstrative of the
thoroughness of Babbage’s designs and his inventive
genius. (The Scheutz Difference Engine was not in
practice very reliable and soon fell into disuse, largely
because it lacked any such provision as lockings. The
idea had first appeared in Babbage’s own designs for
his earlier Difference Engine.)

The long pinions on S can be raised with their axis
so that each will engage the long pinion L in the cage
above, as shown in Figure 4. A digit given off by the
units figure wheel of A will now be added to the chosen
tens figure wheel of ‘A, and every digit given off will
similarly be stepped up one cage. This stepping cor-
responds to a multiplication by 10 and is the decimal
equivalent of a shift in a binary computer. Since
mechanical gearing is reversible, a number may be

10s

10s

IS

1s

Figure 4. Process of stepping, or multiplication, and division by 10. The “long pinions” S are raised with their axis to
engage the long pinions L in the cage above. A number given off will therefore be stepped up a cage, or multiplied by 10. A
transfer in the reverse direction will divide by 10.
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Figure 5. Elements of the carry mechanism. When the
carry figure wheel moves past 9 to 0 arm f acts on arm e to
rotate the “carry warning” indicating that a carry is
necessary into the cage above. A carry from the cage below
will raise the “carry sector” on axis C into gear with the
figure wheel and advance it by one digit position.

given off by ‘A and stepped down, or divided by 10,
before being received by A. These stepping functions
are extensively used in multiplication and division
operations.

4. Anticipating Carry

The mechanisms described so far show how numbers
can be stored, given off, stepped, and transferred be-
tween axes of the Analytical Engine. A digitwise par-
allel form of addition is a natural result of these
mechanisms, but a proper arithmetic addition requires
a method of performing a carry propagation. The carry
mechanism is relatively complex and was the initial
incentive for Babbage to separate the store and the
mill, with the arithmetic mechanisms concentrated in
the latter.

The carry mechanism is based around a special
carry axis F of figure wheels similar to those previously
described. Some components of the mechanism are
shown in Figure 5, and it is elaborated in Figures 6
and 7. The carry figure wheels have a lever arm f
attached to them, placed so that when the figure wheel

moves from 9 to 0 in the additive direction, arm f
rotates a piece pivoted on axis E by acting on lever e
attached to it (as shown dotted in Figure 5). This
“carry warning,” when in the rotated position, indi-
cates that a carry has been generated by the move-
ment of the carry figure wheel past 9 and must be
applied to the figure wheel in the cage above.

After addition to the carry figure wheels is complete,
axis E, on which the carry warnings pivot, is raised.
The lug m of any carry warning that has been rotated
to indicate a carry will engage a similar lug n on the
corresponding “carry piece” on axis W (Figure 6) and

100s

10s

IS

t

Figure 6. Carry mechanism. The carry warning is raised
with its axis E and lifts the carry sector in the cage above
into gear with its figure wheel. In the figure there is a carry
from the tens into the hundreds cage, but none from the
units to the tens.
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Figure 7. “Anticipating carry.” The movable wire ‘w
carried in the arm of the figure wheel may interpose
between the fixed wires w to propagate a carry through
several cages. In the figure a carry is generated in the units
cage. Because the tens figure wheel stands at 9, a carry is
propagated to the hundreds cage. The hundreds figure
wheel does not stand at 9 and therefore breaks the chain of
carry propagation.

cause it to be lifted, too. Each carry piece has two
fingers that project through the framing plates into
the cage above. The finger nearest the front in the
figure bears on the underside of a “carry sector” and,
when lifted, causes the gear teeth of the carry sector
to engage those of the figure wheel that is to receive
the carry. The carry sectors are then all rotated
through one digit position by their axis C, to which
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they are splined as shown in Figure 5. If the carry
sector has been raised into gear with the figure wheel,
it will also move forward through one digit position to
effect the carry propagation.

If, say, the tens figure wheel stood at 9 before it
received a carry from the units cage, then the carry
propagation should generate a new carry into the
hundreds cage. This carry could in turn generate a
new carry into the thousands cage if the hundreds
figure wheel stood at 9, and so on. In the worst case
this carry propagation could continue through all 40
digit cages of a number. The sequential carry propa-
gation suggested by this description will be exceed-
ingly slow. If a carry could be propagated through a
cage in the same time that a figure wheel rotates
through one digit position (an unlikely possibility
given the complex motions of the mechanism), the
complete chain of carry propagation could, in the
worst case, take five times as long as the complete
digitwise parallel addition of two numbers. Babbage
overcame this difficulty  with his “anticiputing  carry”
mechanism-an invention of which he was justly most
proud.

The arm f attached to the carry figure wheel is
drilled through with a vertical hole in which is carried
a loose slug ‘w (Figure 7). When the figure wheel
stands at 9, slug ‘w is interposed between the bottom
of the rear finger w of the carry piece and the top of
the corresponding finger in the cage below. Suppose
now that a carry is generated from the cage below.
The carry piece will be lifted by the carry warning to
indicate the carry. The rear finger w lifts the loose slug
‘w and hence the carry piece in this cage at the same
time to indicate a carry into the next higher cage. The
carry-out is thus generated directly without waiting
for the figure wheel actually to turn past 9 to 0 as a
result of the carry-in. By similar means a carry may
propagate through any number of successive cages
without requiring any additional time. The carry sec-
tors will all be put into gear, and the figure wheels will
all advance through one digit position simultaneously.

Babbage called carry piece w the “fixed wire” and
the loose slug ‘w in the arm of the figure wheel the
“mouable  wire”-a “wire” in this context meaning a
stiff piece of metal, unlike the modern usage. When a
figure wheel stands at 9 he described the movable wire
as “completing a chain” with the fixed wires-essen-
tially a logical AND  function.

In practice the carry mechanism is more complex
than shown. For example, the carry warning and fixed
wires must be lowered before the figure wheels are
moved to assimilate the carry, or the fixed wire will
foul the movable wire of any figure wheel that ad-
vances from 8 to 9. Some mechanism is required,

Annals of the History of Computing, Volume 4, Number 3, July 1982 * 203



A.  G.  Bromley  - Analytical Engine

therefore, to keep the carry sector engaged with the
figure wheel once it has been raised. Further difficul-
ties raised by subtraction are overcome, in part, by
recoding the digits of the carry figure wheels during
subtraction so that the movable wires provide borrow
propagation by O’s instead of carry propagation by 9’s.
One consequence is that addition and subtraction op-
erations cannot be freely intermixed in the Analytical
Engine.

The anticipating carry does not correspond closely
with any common modern discrete-logic binary carry
mechanism. Carry propagate and generate terms are
used in each digit position (cage) so the mechanism is
unlike a ripple carry where a carry-in must be assim-
ilated to form each digit sum before the carry-out is
generated. Neither is it a carry look-ahead mechanism
since the carry indication is passed sequentially
through gating (the movable wire) in each digit posi-
tion. Its speed derives from the fact that the entire
column of wires can be lifted in the same time that a
figure wheel can be moved through one unit. In effect,
the gating for carry propagation provided by the mov-
able wires has a much shorter time delay than move-
ment of the figure wheels. The closest modern analo-
gies are the carry propagation by relay contacts in the
Harvard Mark I or by pass-transistors in VLSI (very
large-scale integration) design. Both are logically
equivalent to the anticipating carry.

5. Could the Analytical Engine Have Been Built?

In many respects, the anticipating carry mechanism
appears to make the most severe technological de-
mands, so here is a convenient place to pause and ask
whether the Analytical Engine could have been built
with the technology at Babbage’s disposal. It is worth
noting that in 1838 only one calculating machine had
been brought to successful, though small-scale, com-
mercial manufacture: the arithmometer of Thomas de
Cohnar. It provided addition and subtraction to a
single accumulator as a direct operation and used a
ripple carry propagation. Multiplication and division
could be performed by repeated addition and subtrac-
tion, but all operations were directly manually con-
trolled.

Consider fast  the question of machining tolerances
in the anticipating carry mechanism. In the worst case
a carry generated in the units cage might have to raise
into gear a carry sector in the 40th cage by a chain of
80 fixed and movable wires. A consistent error of only
3/1000 inch in machining the wires to length would
amount to l/4  inch in the entire column. This toler-
ance is probably satisfactory in practice, for the carry
sectors are held in gear with the figure wheels by

tripping a counterweight, which could make up the
lost motion. Strictly speaking, however, what needs to
be controlled is the difference in height between the
column of wires and the figure cages, which are, in
effect, a column of plates and spacer pieces. We would
therefore need a machining tolerance of only l-2/1000
inch in the thickness of the plates, the length of the
spacers, and the length of the wires. Such tolerances
were achievable at the time, as shown by a recent
examination of loose parts intended for the Difference
Engine.2  They have been machined (not hand-fin-
ished) consistently with one another to just such an
accuracy. It is harder to determine the absolute accu-
racy of the parts without knowledge of the engineers’
working standards, but the fit could be assured by
working to mutually consistent gages. These toler-
ances would also have had to be maintained as the
wires wore in use.

Babbage realized that the total mass of the wires
and carry sectors that had to be lifted through 0.65
inch in 0.15 seconds for a carry from the units to the
40th cage was around 50 pounds. He proposed to lift
a weight during the remainder of the cycle that could
then be dropped to provide the force to lift the mech-
anism and thus relieve the peak load on the main drive
shaft. An examination of the drawings shows that this
load is all carried by lug m of the carry warning. In
Babbage’s design the lug has a cross section of about
l/10  square inch in the shear plane and, if made of
brass, would fail with a load of about 1800 pounds. A
safety factor of at least 20 is thus built into the design.

Analyses such as these lead me to believe that the
Analytical Engine could have been built with the
technology at Babbage’s disposal, although the work
would undoubtedly have been demanding and expen-
sive. It is interesting to speculate whether the Analyt-
ical Engine, had it been built, would have had a
stimulating effect on the British machine-tool indus-
try, like the Difference Engine had. (Whitworth, the
preeminent machine-tool designer of the mid-nine-
‘nenth century, had been earlier employed by Bab-
11.  ge’s engineer, Clement, on the construction of the
Difference Engine. Babbage reports it as having com-
monly been said at a later date that “Babbage made
Clement, and Clement made Whitworth.” Lord
Rosse’s presidential address to the Royal Society in
1854, as recorded in its proceedings, confirms that
Babbage’s work had been a major direct stimulus.)

* I wish to thank Michael Wright of the Science Museum for his
guidance and assistance in these measurements. His expert knowl-
edge of nineteenth-century machining is a continuing inspiration.
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Figure 8. “Barrel” and its “reducing apparatus. ” A microprogram word is represented by a vertical row of studs screwed
to the barrel. These act on the ends of the control levers when the barrel moves sideways. The “reducing sectors” of one,
two, and four teeth advance the barrel over the corresponding number of verticals, and several may act in combination at
one time. In the figure, reducing sector 1 is put into gear directly by order of the barrel via control lever a. Reducing sector
‘1 is put into gear by a “running up ” from the carry apparatus if enabled to do so by the barrel and lever b. The effect is a
conditional transfer. A “conditional arm” is sensed by control lever c to provide an action conditional on a previous event.

6. Microprogram Control

With the mechanisms so far described to store, trans-
fer, step, and add numbers, it should clearly be possible
to assemble a computing device of some power. An
automatic computing device requires, in addition,
some control mechanism by means of which these
elements may be coordinated to work together. This
was done in the Analytical Engine by a technique that

we would now recognize as microprogramming. We
will see in subsequent sections something of the ver-
satility with which Babbage applied the technique.
For the present we concentrate on the methods by
which Babbage could control components of the ma-
chine by information read from a store, how a se-
quence of operations could be effected, and how the
sequence could be altered in response to conditionally
occurring events in the machine.
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The detailed action of the Analytical Engine during
each step of a complex operation, such as multiplica-
tion or division, is determined by a “barrel,” to the
surface of which studs may be screwed in any prede-
termined combination. At the start of each cycle of
operation of the mill, the barrel “advances” by moving
sideways parallel to its axis, as shown from the dotted
position in Figure 8, so that the studs bear against the
ends of levers. These levers put into gear the mecha-
nisms for the various functions desired in that cycle.
In any one cycle the studs in a single vertical line
parallel to the axis of the barrel act to control the
machine. The barrel may be thought of as a micropro-
gram store and a single vertical row of studs as a word
of that store. Babbage used the word “vertical” in the
sense both of a word of the microprogram store and of
a combination of microoperations of the Analytical
Engine caused by the action of that word of the store.

In practice each control lever consists of a pair, such
as a and ‘a, geared together so that they can be put
positively into one of two positions by the barrel. The
appropriate piece of mechanism is therefore put posi-
tively in or out of action. The barrel may carry blank
studs, such as ‘s, that act on neither lever. The blank
studs do not specify a don’t-care condition, but are an
indication that the existing state of action or inaction
should be continued by the mechanism for another
cycle.

The control levers do not directly produce actions
on the mechanism of the Analytical Engine; instead,
each lever connects the mechanism to a source of
power. Thus a control lever whose purpose is to raise
an axis will not itself raise it, but will put into gear
with the main drive shaft a cam that raises the axis.
The control lever therefore does not have to exert any
substantial direct force, and the construction of the
barrel is greatly simplified.

In practice a barrel might act on 50, 100, or more
control levers and have 50-100 verticals. Figure 8 gives
some impression of the complexity of the associated
systems of levers, cranks, pivots, and sliders. There
was nothing of the ease of backplane wiring for the
distribution of control information in the Analytical
Engine.

A sequence of microoperations is effected by ar-
ranging for a number of different verticals to act in
succession. The movement of the barrel from one
vertical to another is produced by the “reducing ap-
paratus” shown on the right in Figure 8. When the
barrel retreats to its unadvanced position, shown dot-
ted in the figure, it is geared up with axis R. If the gear
on axis R is moved one or more positions, the barrel
will move over a similar number of verticals. In gen-

eral, the barrel orders its own advance via several of
the control levers. Examples of mechanisms for con-
trolling such advances are shown in Figure 8.

Control lever a acts to lift into gear with the reduc-
ing apparatus a sector, 1, with only a single tooth.
During the cycle this sector is caused to rotate, by a
mechanism not shown, and in the process advances
the reducing apparatus and hence the barrel through
one position. Similar control levers can put into gear
sectors 2 and 4 of two and four teeth, respectively.
The rotation of sectors 1, 2, and 4 is so phased that
their teeth act at different times. By the barrel acting
on a suitable combination of the control levers, a
selection of the sectors can be put into gear to move
the barrel over from one to seven verticals. Connection
between the reducing apparatus and the barrel is by
means of reversing gears controlled by a control lever.
The barrel can thus order a transfer to another vertical
up to seven positions either forward or backward
relative to the present one.

In practice there may be more reducing sectors than
are shown here, and the transfer may be over a slightly
larger range than the seven verticals in this example.
The transfer is always relative to the present vertical,
however, and generally over only a portion of the total
number of verticals of the barrel. Every vertical orders
the transfer to the next vertical in the sequence. If no
transfer is specified, the vertical will be repeated in-
definitely unless interrupted by a conditional transfer.

Conditional transfers may take place in response to
conditional events within the mill of the Analytical
Engine. A common source of these is a carry propa-
gation beyond the highest cage of the carry apparatus.
Such an event is called a “running up” and, if tens-
complement arithmetic is being performed, signifies a
change in sign of an arithmetic result. (There is gen-
erally no overflow indication in the Analytical Engine.)
A running up can occur in similar circumstances in
connection with the specialized counting apparatus of
the machine.

Figure 8 shows, associated with lever b, one mech-
anism for a conditional transfer. The control lever
places a loose slug under sector ‘1. If a running up
occurs later in the cycle, as a result of an addition
ordered by other control levers, the slug and hence the
sector will be raised into gear with the reducing ap-
paratus and cause it to move through one position. If
no running up occurs, or the control lever is not put
in, nothing happens. The effect therefore is that the
normal unconditional transfer ordered by the barrel
may conditionally be extended to move over one ad-
ditional vertical. We finally arrive at one of two differ-
ent verticals according to whether the running up has
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occurred or not. Note that with this mechanism the
conditional transfer responds to an event taking place
later in the same cycle during which the vertical acts.

A conditional response to a preexisting condition is
shown by control lever c. The control lever is too short
to be acted on directly by the studs on the barrel
unless “conditional arm” C has been interposed. Here
the control lever is shown as affecting some part of
the mill, but it could as easily act to put a reducing
sector into gear. The conditional arm must be in place
before the barrel advances, but the response to a
conditional arm may be delayed over several cycles by
the use of blank studs on the barrel. There is, of
course, no reason why both forms of conditional mech-
anism cannot act during a single cycle of the Analytical
Engine, and multiway  branches are quite possible.

The whole concept of a conditional sequence of
actions in a machine, and in particular of a conditional
dependence on the outcome of previous actions of the
machine, is original to Babbage and the design of the
Analytical Engine. It is a concept of the most profound
intellectual importance.

7. The Timing Cycle of the Analytical Engine

The operation of the barrel and its synchronization
with the remainder of the mechanism are well illus-
trated by considering the timing of the cycle of oper-
ations. Each cycle involves reading a vertical of the
barrel and carrying out the functions so ordered. The
cycle of operation is counted in terms of units. A unit
is the time for a figure wheel to move through a single
digit position. Babbage took this unit as about l/7
second (corresponding to a speed of 10 feet per minute
at the periphery of a figure wheel 4 inches in diameter),
although the design of the machine is kinematic in the
sense that it could have been run at any lower speed.

A short cycle of 15 units is employed for a simple
transfer from one set of figure wheels to another. A
long cycle of 20 units is employed when it is necessary
to perform an addition involving both a transfer and a
carry propagation. The appropriate length of cycle is
ordered by the barrel. A simple number transfer takes
about 2.4 seconds, and a full addition about 3 seconds.

Figure 9 is a timing diagram, similar in style to some
of Babbage’s own notations, illustrating the events in
the basic timing cycles. The extent of an arrow indi-
cates the time in the cycle during which an action
takes place; a dotted arrow indicates that the action
might occupy only part of the available time interval.
The direction of the arrow indicates, relative to a
conventional set of axes, the direction of the motion;
circular motions are indicated by an arc attached to
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Figure 9. Timing diagram illustrating the events in the
basic timing cycle. This figure is similar in style to
Babbage’s notation of timing.

Barrels
Advance

I

the arrow. A single arrowhead indicates the basic
action; double arrowheads indicate a return to the
inactive position (many of these movements have been
omitted from the figure for simplicity).

A cycle commences with the advance of the barrel
in units 1 and 2 to act on the control levers. The
barrels retreat back into gear with the reducing ap-
paratus in units 3 and 4. The reducing apparatus can
move the barrel to a new vertical during the remainder
of the cycle. In the short cycle the available time limits
the rotation of the barrel to within 11 verticals of the
one that has just acted. A greater transfer is possible
in the long cycle, but some of the units will be con-
sumed by provision for conditional transfers as a result
of a running up, etc.

The axes of the mill, transfer pinions, and so forth,
are put into gear in unit 3 as soon as the advance of
the barrel is complete. The digitwise parallel transfer
of numbers then takes place during units 4 to 12. The
lockings  are applied during units 13 to 15. A locking
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Figure 10. Plan of the general arrangement of the Analytical Engine. It also serves as a functional block diagram, as explained in
the text and Figure 11.

is applied generally to every second axis in a train of
gearing, and each takes only half a unit, so it is possible
for a transfer to extend through a train of up to 12
stages of gearing.

In the case of a long cycle the carry wires are lifted
by the carry warnings during unit 16, and the carry
sectors are rotated to perform the carry propagation
during unit 17. In general, a sum is formed not only
on the figure wheels of the carry apparatus but also
on other figure axes of the mill to save the time
subsequently required to transfer a sum from the carry
figure wheels to the place where it is to be stored.
Some of the gearing of the additive transfer will there-
fore remain in gear during the carry propagation to
convey the carry to the accumulating figure wheels.
After this transfer, it is again necessary to apply the
lockings,  during units 18 to 20.

8. The Functional Organization of the Analytical
Engine

We now turn to an examination of how the functional
components are organized into the complete Analyti-
cal Engine. The discussion is based on Babbage’s
general plan 25, which he had lithographed and dis-

tributed in his own lifetime. The plan is shown in
Figure 10, and various features of it are highlighted in
subsequent figures. Besides showing the mechanical
arrangement of the Analytical Engine, the plan also
serves as a functional block diagram of the design.

The major axes (registers) and transfer paths (data
buses) are picked out in Figure 11. On the right is the
store comprising a group of figure axes ranged along-
side a set of racks, or toothed bars, one in each cage.
Each store axis has two sets of figure wheels and can
thus store two numbers. The number of axes intended
is not clear from the figure (which can extend farther
to the right), but we may assume 50 from the layout
of the variable cards. The store would thus hold 100
numbers, which is more than adequate for any of
Babbage’s programs. Transfer gears enable any set of
figure wheels to receive a number from the racks or
give off a number to the racks. Numbers given off by
the store are received by “ingress axis” I of the mill.
Numbers to be placed in the store are given off by the
“egress axis” ” A. The ingress and egress axes act as
memory buffer registers.

The axes of the mill are arranged around a set of
“central wheels,” one in each cage, to which the figure
wheels of the axes may be connected by transfer gears.
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Figure 11. Major registers and data paths of  the Analytical Engine. The store axes are arranged along the racks to the right, and
communicate with the mill via the “ingress” and “egress” axes, which act as buffer registers, The mill is arranged around the
“central zuheels,”  which act as an internal data bus servicing accumulators A and ‘A and table axes T,  to Tg  used in multiplication and
division. F, ‘F, and “F are the figure axes of the three sets of anticipating carry apparatus.

These central wheels act as a data bus interconnecting
the various registers of the mill. Aside from the ingress
and egress axes I and “A, the axes of the mill include
the “head)’  and “tail axes” A and ‘A, used as accu-
mulators, and nine “table axes” T, to T9,  used in
multiplication and division.

Two sets of figure wheels are on each of the mill
axes, and associated with each is a set of transfer and
long pinions (G, S, L,  J) similar to those in Figures 3
and 4:The  pinions provide for transfers between the
two sets of figure wheels and steppings, as we have
described. Associated with each of the table axes is an
additional axis (such as ‘Sp  near T2)  that connects the
top and bottom cages to make the stepping equivalent
to a cyclic shift. The head and tail axes A and ‘A are
interconnected so that the stepping provides a double-
length shift, and a triple-length shift is possible be-
tween A, ‘A, and “A.

After the preliminary stages of a multiplication or
division operation, neither the ingress axis I nor the
carry apparatus “F  is required, and there is no demand
for memory transfers. This apparatus can be used to
perform simple addition operations concurrently with
the execution of the multiplication or division opera-
tion in the mill. If the Analytical Engine were used for
computing tables, new coefficients could thus be com-
puted in parallel by difference techniques with no
additional time required in the mill. Such concurrent
computations would use tens-complement arithmetic
and store numbers in this form. (Sign-and-magnitude
addition would be possible with just the apparatus
shown, but would be complex and slow.) Unfortu-
nately I have little additional information at present
on these concurrent operations.

Three sets of anticipating carry apparatus F, ‘F, and
“F are provided. Normally, F and ‘F are associated
with the head and tail axes A and ‘A, respectively, to
provide a double-length accumulator for use in multi-
plication. However, both F and ‘F are associated with
A in signed addition operations.

Figure 11 shows three barrels and associated reduc-
ing apparatus. If these barrels always move in syn-
chronization, they are logically equivalent to a single
larger barrel, The separation will reduce the height of
each barrel to more manageable proportions and allow
a simpler and more direct connection of the control
levers to the apparatus they control-both important
practical considerations. Babbage found significant
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Figure 12. Actions during the main loop of multiplication. A partial product, selected by a digit of the multiplier, is given off by a
table axis (in this case T3)  and added to the product on the head and tail axes A and ‘A. Simultaneously, the multiplier is stepped
down on “A to select the next partial product, and the table axes are all stepped up to maintain the correct alignment with the
product.

advantages in allowing the barrels to step between
their verticals independently of one another, however,
as we will see in the discussion of signed addition.

As with so many other facets of the design of the
Analytical Engine, there is an unmistakably modern
feel about the organization of the store and mill. It is
lost to some extent in the following description of the
arithmetic operations of the mill, where the character-
istics of the sign-and-magnitude decimal arithmetic
play a dominant role. The feeling of familiarity will be
retained, however, by anyone who compares Bab-
bage’s algorithms with those of decimal machines such
as the Harvard Mark I or the ENIAC.

9. Multiplication

It may seem surprising to discuss the operation of
multiplication in the Analytical Engine before discuss-
ing addition and subtraction. Signed addition is logi-
cally the most complex operation in the machine,
however, and the control techniques used to imple-
ment it are by far the most sophisticated. This se-
quence also parallels the order in which Babbage

developed the microprogram sequences. Although
multiplication uses a substantial amount of apparatus,
it is logically quite straightforward.

Multiplication commences by fetching the operands
from the store via ingress axis I to head and tail axes
A and ‘A. The operand with the lesser number of digits
(the smaller in absolute magnitude) is used as the
multiplier and is transferred to “A. The otherloperand
is used as the multiplicand. The sign of a number is
represented by a figure wheel in a 41st cage of every
store and figure axis. If the digit stored on the sign
figure wheel is even (0, 2, 4, 6, or 8), the number is
taken as positive, otherwise as negative. As the oper-
ands are fetched from the store, the signs are stripped
and added to give the sign of the product. Before the
multiplication commences, the multiples from 1 to 9
of the multiplicand are made by repeated addition and
stored on table axes T1 to Ts.

The multiplication commences from the least sig-
nificant digit of the multiplier. A digit of the multiplier
selects one of the multiples of the multiplicand on the
table axes as a partial product. The partial product is
given off to the central wheels (as shown in Figure 12)
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and added to the double-length product on the head
(most significant half) and tail (least significant half)
axes using the anticipating carry apparatus F and ‘F.
The multiplier, on “A, is stepped down to select the
next multiplier digit, and the table axes (including the
one giving off) are all stepped up to preserve the
correct alignment of the partial products with the
accumulating sum. Significant digits stepped off the
top of the table axes are returned to the bottom by
the cyclic nature of the shift. Special apparatus, con-
trolled by the “spiral axes,” controls the transfer
pinions linking the central wheels to the head and tail
axes to ensure that the correct digits of each partial
product are added onto the head and tail axes. The
multiplication process is illustrated by the example in
Table 1.

At the end of the multiplication, the product is
stepped (shifted) to align its decimal point with that
of the operands and is then given off to the store via
egress axis “A. Provision is made for high-precision
multilength multiplications to be compounded from
single-length products.

The time taken by multiplication depends on the
number of digits in the multiplier and the amount of
stepping required to align the decimal point of the
product. About 4 minutes would be required in the
worst case of 40 digit operands, but about 2 minutes
might be regarded as more typical. Square root was
intended to be performed in the Analytical Engine by
using an iterative formula employing multiplication.
To speed the early steps of such a process, a special
form of “approximative multiplication” is provided in
which only the most significant few digits of the mul-
tiplier are used.

The development of the multiplication algorithm
played an important role in the history of the Analyt-
ical Engine because it led Babbage to the invention of
the anticipating carry to speed the addition of the
partial products. The complexity of the anticipating
carry apparatus led him in turn to the clear separation
of the functions of the mill and store, a concept that
did not clearly emerge in modern computers until the
work of von Neumann. (In Babbage’s Difference En-
gine each storage axis had associated with it a ripple
carry mechanism so that it became an accumulator in
a similar manner to the organization of the Harvard
Mark I and the ENIAC.)

10. Division

Division is a little more complex than multiplication
but follows generally similar principles. The multiples
from 1 to 9 of the divisor are first made by repeated
addition and stored on the table axes. In the process

Table 1. Example of Method Used for Multiplication

In this example 325 is multiplied by 132. Themultiples of
the multiplicand are first constructed on the table axes.
Each multiplier digit selects a partial product from the table
axes and adds it to the total on the head and tail axes. The
table axes are cyclically shifted at each step. The central
wheels distribute the digits of the selected partial product to
the head and tail axes.

Multiolier Central
Digi t Head Tail Wheels T,  T2 T3

0 0 0  0 0 0 3251  6501  9751
2 6 5 0 6501-

0 0 0 6 5 0
3 9 7 5 7519

2513 5016  7519

0 1 0  4 0 0 5132 0165  5 1 9 7
1 32 5 5132

0 4 2  9 0 0 1325  1650  1975

the two most significant digits of each multiple are
stored on special figure wheels on each table axis for
later use in determining trial quotient digits.

The dividend is stepped up or down on the head and
tail axes to align its most significant digit with the
most significant digit of the divisor. Stepping is done,
where possible, concurrently with making the table of
multiples of the divisor. (The decision on how to step
the dividend involves a six-way branch in a single
microinstruction, which gives some indication of the
flexibility of the reducing apparatus associated with
the barrels.)

In each step of the division the two most significant
digits of the remainder are compared with the two
most significant digits of each multiple of the divisor.
This comparison yields a correct estimate of the next
quotient digit except in the case where the two most
significant digits of the remainder equal those of one
of the multiples. In this case the trial quotient-digit
might possibly be one too large. The multiple of the
divisor indicated by the trial quotient digit is selected
from the table axes and subtracted from the remain-
der. If the new remainder is negative, the trial quotient
digit was one too large, and we add back the divisor to
generate the correct remainder. The quotient is assem-
bled digit by digit on “A and is finally given off back
to the store.

Division is somewhat slower than multiplication
because the selection and subtraction steps are not
overlapped. Four minutes may be taken as a repre-
sentative division time. As with multiplication, an
approximative form of division, which generates only
the first few significant digits of the quotient, is pro-
vided for use with iterative formulas.
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Figure 13. Stages in the pipeline of signed addition. An operand is fetched from, the store to the ingress axis I, added to or
subtracted from the total on A, the result converted into sign-and-magnitude representation on egress axis “A, and returned to store,
in four separate steps that may be overlapped with one another for different operands.

The development of division also played an impor-
tant role in the history of the Analytical Engine. An
examination of the tentative processes involved in the
determination of the quotient digits first led Babbage
to a clear understanding of conditional processes con-
ditioned by events occurring during the calculation.
As we saw, these conditional processes are clearly
embodied in the reducing apparatus of the barrels.

Babbage continued to exert considerable energy to
improving the division process. Figure 10 shows a later
design than that just described. Table making is
shortened by first stepping the divisor to form ten
times it and then subtracting the divisor to form the
ninth, eighth, etc., multiples concurrently with the
formation of the smaller multiples by addition. The
same process can be applied in multiplication, of
course. Babbage also found a method of overlapping
a trial subtraction in division with the selection of the
next quotient digit and of avoiding the difficulties
created by choosing a trial quotient digit too large.

11. Signed Addition and Subtraction

The use of a sign-and-magnitude representation for
numbers is particularly convenient in multiplication

and division because it makes possible a very simple
determination of the sign of the result. Addition and
subtraction, however, are both complicated by the use
of a sign-and-magnitude representation. The Analyti-
cal Engine uses a tens-complement representation in-
ternally for addition and subtraction, and conversions
to and from this representation are performed as op-
erands are read and results are stored.

Another complication was introduced by the fact
that the Analytical Engine did not provide residual
storage between operations. Every result was returned
to the store and, if required as an operand, was again
fetched from the store for the next operation. The
head and tail axes were not used, as are the registers
in a modern computer, to hold the result of one oper-
ation as an operand for the next. A string of addition
operations would therefore be quite slow. Babbage
avoided this difficulty by making a string of additions
and subtractions the basic additive operation. If de-
sired, only the final sum would be returned to store,
but any or all of the partial sums could also be stored.
All the partial sums of a series could be formed and
stored as a new series by a single operation. To achieve
this end, addition is pipelined so that several operands
are at different stages of processing at one instant.
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Figure 14. Overlapping of functions in the pipeline for
signed addition. Five operands are accumulated, and only
the result is returned to the store.

In the first step of an addition (Figure 13),  an
operand is transferred from the store via the racks to
ingress axis I.  Babbage associated two signs with each
operand. The “algebraic sign” is the sign associated
with a variable in a mathematical formula, and is
specified by an addition or subtraction being ordered
by the cards. The “accidental sign” is the sign that
the number is found to have, as a result of some
previous operation, when it is fetched from the store.
The algebraic and accidental signs are combined when
the operand is fetched to the ingress axis and used to
determine whether the magnitude of the number must
be added to or subtracted from the total.

In step two of an addition, the operand is transferred
from ingress axis I, via the central wheels, and added
to or subtracted from head axis A. A technical diffi-
culty arises because addition and subtraction cannot
be mixed in the anticipating carry apparatus. To avoid
this difficulty, both sets of carry apparatus F and ‘F
are geared to the figure wheels of A in such a way that
the 9’s of the figure wheels of ‘F and A correspond to
the O’s of F. The carry apparatus ‘F is used when
adding an operand, and the wires provide carry prop-
agation by 9’s. Carry apparatus F is used when sub-
tracting, and the wires provide borrow propagation by
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Figure 15. Overlapping of functions in the pipeline for
signed addition. The same five operands are accumulated
as in Figure 14, but each of the five partial sums is
returned to store.

0’s.  The sign of the sum is maintained by the running
up acting on a sign figure wheel in a 41st cage. An even
digit on this sign wheel signifies a positive number; an
odd digit signifies a negative number. There is no
provision for detection of arithmetic overflow.

If a partial sum is to be stored, it is transferred, in
a third step, from head axis A, via the central wheels,
to egress axis “A. If the sum is negative, it is transferred
in the subtractive sense, and carry apparatus “F is
used to convert it to the correct sign-and-magnitude
form. The fourth step of addition is to transfer the
sum from egress axis “A, via the racks, into the store.

The interaction of the four steps of the addition
pipeline is shown in Figures 14 and 15. These figures,
and Figure 16, are quite unlike any of Babbage’s
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notations at this time. (Deciphering the details of the
addition pipeline from the original notations was a
most difficult and demanding task.)

Figure 14 shows a simple case in which five quanti-
ties are summed and their total only is given off to the
store. The operation forms +nl+n2+n3-n4-n5  where
nl . . . n5 = +7, -8, +5, +6, -3. (The signs +++--
that occur in the formula are the algebraic signs; the
signs +-++- associated with the values of the oper-
ands are the accidental signs.) This operation would
take a total of about 28 seconds. Note that as the first
operand (+7) is added from the ingress axis to the
head axis, the second operand (-8) is fetched from the
store to the other set of figure wheels of the ingress
axis in the same cycle. Similarly, the fetching of each
of the other operands is overlapped with an addition
to or subtraction from the head axis.

Figure 15 shows the same summation of five quan-
tities, but in this instance every partial sum is given
off back to the store. The operation would take about
40 seconds. In this case we note that the second
operand (-8) is fetched from the store to the ingress
axis in the same cycle as the first partial sum (7) is
transferred from the head axis to the egress axis. The
second operand is, in the next cycle, added into the
total at the same time the first partial sum is given off
to the store. Similar overlapped operations are per-
formed in the remaining cycles.

The signed addition operation is controlled by three
barrels that control the actions of the ingress, head,
and egress axes, respectively, and the associated ap-
paratus in each case. These axes are the interaction
points of the four steps of the addition pipeline.

Babbage made the three barrels sequence through
their verticals independently of one another. To un-
derstand his reasons, consider first the simpler exam-
ple in Figure 14. The second operand (-8) is fetched
to the ingress axis in the same cycle as the first
operand (+7) is added into the total and hence must
be received on the second set of figure wheels of the
ingress axis. This second operand is subtracted from
the sum in the next cycle so that the third operand,
which is fetched from the store in the same cycle, must
be received on the first set of figure wheels of the
ingress axis. In general, the operands will be received
from the store alternately onto the two sets of figure
wheels. Which set of figure wheels is receiving must
be remembered by the control apparatus so that the
transfer pinions, etc., may be set appropriately. The
control apparatus does this most easily and naturally
by having two sets of states in the microprogram-
that is, two sets of verticals on the barrel.

A number of similar conditions need to be remem-
bered by the control mechanism. The figure wheels of
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Figure 16. A state transition diagram for one of the
barrels in signed addition. The transitions are between
the verticals of the barrel controlling the accumulator A
and the anticipating carries F and ‘F  in signed addition (see
Figure 13). The transitions between the states, shown by
the arrows, are generally multiway  conditional branches.

A are alternated with every partial sum given off to
the store. Addition or subtraction of individual oper-
ands requires different usages of the carry apparatus
F and ‘F. A negative partial sum given off requires the
use of carry apparatus “F, which a positive partial sum
does not. Since these four conditions are independent
of one another, they would require a total of 16 com-
plete sets of states in the microprogram or sets of
verticals on the barrels. By having the barrels se-
quence independently of one another, the barrels as-
sociated with the ingress and egress axes require only
two sets of verticals each, and the barrel associated
with the head axis needs only four sets of verticals.

By way of example, Figure 16 shows a modern state-
transition diagram of the arrangement of the barrel
controlling head axis A and carry apparatus F and ‘F.
(Babbage adopted similar diagrams only after 1840.)
Only nine verticals on the barrel are required, but
two-, three-, and four-way conditional branches occur
between states. The barrels for the ingress and egress
axes are of a similar complexity, and all exhibit a
beautifully symmetric disposition of the verticals on
the barrel.

12. Programming the Analytical Engine

Now we turn to an examination of the user-level
programming of the Analytical Engine. It should be
remarked at the outset that user programming was
the least well-developed aspect of the design, and
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Babbage’s work in this regard (at least throughout the
design of the Analytical Engine discussed here and
until 1840) shows some serious deficiencies. In assess-
ing Babbage’s understanding of programming con-
cepts, we should, I think, bear in mind the considerable
sophistication of his microprogramming as described
in the preceding sections.

Babbage used punched cards to program the Ana-
lytical Engine. These cards were strung together by
narrow ribbons, after the manner of cards for the
Jacquard loom, into strings that are logically more
closely analogous to paper tape than to modern
punched cards. It is therefore possible to move both
forward and backward through the strings of cards. In
the earliest designs of the Analytical Engine a barrel,
similar to the microprogram barrels, was used in place
of the punched cards, and the existence of a hierarchy
of levels of control was strikingly evident. Punched
cards were substituted to overcome the evident inflex-
ibility of the barrel. Babbage realized, however, that a
program on punched cards could be of unlimited ex-
tent and that by giving the Analytical Engine the
power to read and punch numbers on other cards, he
had created a universal calculating machine of effec-
tively unlimited capacity. A deficiency of resources in
the machine could be overcome by the expenditure of
greater execution time.

In one respect the arrangement of Babbage’s cards
appears very strange to a modern reader. An operation
to be performed, such as a multiplication, and the
variables in the store to be used as operands and to
store the result were not only specified on separate
cards; these cards were in separate strings that were
able to be sequenced independently of one another.
Babbage called the two strings of cards the “operation
cards” and the “variable cards.” Separate counting
apparatus was associated with the strings of operation
and variable cards, and the cards could be ordered to
move forward and reverse (and hence to loop) inde-
pendently of one another by an amount controlled by
the counting apparatus.

Babbage had good reasons to back his decision to
separate operation and variable cards. His earlier
mathematical work had led him to a serious study of
mathematical notation (Dubbey 1978),  and he empha-
sized the distinction in kind between the symbols for
operations and the symbols for the quantities on which
they acted. Babbage saw the operation and variable
cards as representative of these two classes of symbols
and therefore saw their separation as entailed by his
general considerations of mathematical notation. This
opinion may have been reinforced by the observation
that cycles in the operation cards were easily found
while cycles in the variable cards were very hard to

find. In modern practice we would make a distinction
between the name of a variable (which is what a
variable card really is) and the value it contains, rather
than between the operation and the name of the
variable. I am not convinced that Babbage had clearly
resolved even the representational difficulties that his
separation of operation and variable cards implies (for
example, with respect to giving off partial sums in
signed addition), let alone the broader programming
implications.

Some two dozen programs for the Analytical Engine
exist dated between 1837 and 1840. Strictly speaking,
they are not programs in the modern sense, but are
walkthroughs of particular execution instances of pro-
grams. In consequence, the mechanism by which the
sequencing of operations is obtained is obscure. In-
deed, the “user instruction set” of the Analytical En-
gine seems nowhere to be clearly stated.

One group of programs deals with the tabulation of
polynomials by difference techniques. These programs
appear not to use the signed addition operation but
just the tens-complement addition provided by ingress
axis I and carry apparatus “F. The Analytical Engine
could certainly perform the calculations for which the
Difference Engine was intended, but to greater preci-
sion and using polynomials of higher degree.

A second group of programs deals with the tabula-
tion of iterative formulas of varying complexity. Fre-
quently these programs involve the tabulation of a
polynomial by difference techniques as a subfunction.
The most complex program of this style is that for the
Bernoulli numbers included in Ada Lovelace’s notes
to Menabrea’s paper on the Analytical Engine. This
program requires a nested-loop structure with a vary-
ing range for the inner loop.

A third group of programs deals with the solution of
simultaneous equations by variants of Gaussian elim-
ination. Part of the group explores various methods of
doing the row reductions, with a view to minimizing
the computing time. The remainder of the programs
explore ways in which the coefficients of the equations
can be arranged in the store. Babbage is clearly seeking
simple looping structures for the operation and vari-
able cards. The cycle of operation cards is easily found;
it is of similar complexity to that required for the
Bernoulli-numbers program. In the last of these pro-
grams the variable cards are listed. Beside groups of
them are notations such as: “like D,”  “somewhat like
B,”  and “not identical with ‘C.” At the end the notation
“Not similar” signifies that Babbage had not found
the loop structure he sought.

With hindsight we may note that in the Analytical
Engine (at least until 1840) Babbage did not possess
the variable-address concept; that is, there was no
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mechanism by which the machine could, as a result of
a calculation, specify a particular variable in the store
to be used as the operand for an instruction. Such a
mechanism, used as an array or vector index as in a
modern computer, would have provided an immediate
solution to the difficulties in the Gaussian-elimination
program. Babbage’s store has no structure accessible
to the programmer; the variable cards simply nomi-
nate specific store axes in total isolation from one
another.

One program in which Babbage comes to grips with
structuring his data space forms the product of two
polynomials by accumulating the cross-products of the
coefficients to give the coefficients of the product
polynomial. For this program the Analytical Engine is
provided with two mechanisms for reading number
cards, each with a separate sequencing mechanism.
One set of coefficients is placed on each reading mech-
anism; these are moved independently to select the
operands for the cross-products. This artifice is
scarcely a general solution to the variable-address
difficulty, although the program in this instance was
well enough structured to allow the generation of any
number of coefficients of the product polynomial with-
out program change.

To put Babbage’s difficulty into perspective, it is
instructive to remark that neither the Harvard Mark
I nor the ENIAC possessed the variable-address con-
cept, and both would have suffered the same difficulty
as the Analytical Engine in performing Gaussian elim-
ination. Both did, however, possess table-lookup
mechanisms that could have been used in programs
analogous to Babbage’s for forming the product of two
polynomials. The first workable solution came with
von Neumann’s proposal for the EDVAC where the
program was in the same memory as the data, and a
computed address could be substituted in the address
field of any instruction. In von Neumann’s hands the
stored-program concept seems to have amounted to
nothing more than a particular solution (and a nasty
one at that) to the variable-address problem. The
more general conception made possible in a stored-
program machine of a program-building instruction
sequence, as in an assembler or compiler, did not come
until later. It is evident that the difficulties that trou-
bled Babbage also troubled the twentieth-century in-
ventors of computers.

13. On the User Instruction Set

The reader may have detected a certain hesitation in
the preceding section. It is difficult to write with
authority on the programming and user-level facilities

of the Analytical Engine. Most of Babbage’s papers
deal with the mechanism of the component parts of
the machine, and hence with what can be termed the
microprogramming level; only in rare instances do the
papers appear to limit the facilities that might have
been provided at the programming level.

Let me take one extreme example. Figure 10 shows
a “counting apparatus” connected to the store racks.
It actually consisted of several sets of two- and three-
digit counters mounted above one another on a single
set of axes. Among many other purposes, some of the
counting apparatus was used for calculating the step-
ping required to position the decimal point correctly
in the result of multiplication and division. For this
purpose it is clearly necessary to know where the
decimal point is supposed to be located. In Babbage’s
1837 paper (Randell 1973) the decimal point is fixed
for the duration of any one program and specified by
a single large handwheel. By mid-1838 it is manipu-
lated in decimal form and is apparently obtained from
special figure wheels in the mill via the store racks. It
could have been fetched from the store and could
indeed have been fetched along with each operand
read from the store with only trivial changes to the
mechanism. Nothing in the mechanism would have
precluded Babbage’s developing a floating-point num-
ber system. I am confident that he did not do so (at
least until 1840) because, of course, it would have
altered the microprograms for multiplication, division,
and (especially) signed addition.

As a more modest example, could the “fixed” deci-
mal-point indication have been altered in the store
somewhere to achieve a dynamic resealing  of prob-
lems? I simply do not know, although with 40-digit
numbers there, cannot have been much demand for it.
Could the limited-precision forms of multiplication
and division, intended for iterative approximations to
square root, etc., have been generally used for low-
precision calculations in the midst of high-precision
ones? This is an eminently practical suggestion with
significant speed implications, but, again, I simply do
not know enough of how this facility was to be used
by the programmer to do more than guess at the
answer.

A more modern example may help to clarify the
idea that a machine can reach a threshold level of
complexity (or richness) after which significant func-
tional extensions,may  be achieved with negligible ad-
ditions to the mechanism. The ENIAC was not designed
as a stored-program machine. Only relatively minor
additions were necessary, however, to simulate a
stored-program machine effectively with instructions
taken from a function-table unit.
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14. Conclusion REFERENCES

Babbage’s Analytical Engine is remarkably sophisti-
cated, far more so than has previously been supposed,
as is most evident on examination of the design at the
level of the microprogramming of the operations of
multiplication, division, and signed addition.

The descriptions of the Analytical Engine provided
in this paper are introductory in two senses. First, the
paper is based on a detailed analysis of less than 10
percent of the material in the Science Museum collec-
tion and only a cursory examination of the remainder.
Doubtless further detailed examination will reveal the
design of the Analytical Engine to have been even
richer than I have suggested, but such an examination
will take several years. Second, this paper is introduc-
tory in the sense that it provides only a greatly sim-
plified description of the designs on which it is based.

The study of Babbage’s Analytical Engine provides
an opportunity rare in the history of technology. The
design of the Analytical Engine was carried to a
considerable state of perfection, but was effectively
completely independent of modern developments.
Babbage’s papers were not subjected to any detailed
examination until 1969 and hence cannot have influ-
enced the design of modern computers in more than
the most superficial manner.

In this circumstance it is remarkable that Babbage’s
design and many details of it seem so thoroughly
modern, especially in view of the enormous differences
in the technology used. Indeed, I am bothered that the
Analytical Engine is too much like a modern computer.
Do we infer that a computer can only be built in
fundamentally one sort of way? Or have we allowed
ourselves to be backed into a corner in using only
one computational style? Perhaps, in the long run,
questions such as these will prove to be important
fundamental issues that the study of the history of
computing should discuss.
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